CHAPTER 20

Meta-Regression

Introduction

Fixed-effect model

Fixed or random effects for unexplained heterogeneity
Random-effects model

INTRODUCTION

In primary studies we use regression, or multiple regression, to assess the relation-
ship between one or more covariates (moderators) and a dependent variable.
Essentially the same approach can be used with meta-analysis, except that the
covariates are at the level of the study rather than the level of the subject, and
the dependent variable is the effect size in the studies rather than subject scores. We
use the term meta-regression to refer to these procedures when they are used in a
meta-analysis.

The differences that we need to address as we move from primary studies to meta-
analysis for regression are similar to those we needed to address as we moved from
primary studies to meta-analysis for subgroup analyses. These include the need to
assign a weight to each study and the need to select the appropriate model (fixed
versus random effects). Also, as was true for subgroup analyses, the R” index, which
is used to quantify the proportion of variance explained by the covariates, must be
modified for use in meta-analysis.

With these modifications, however, the full arsenal of procedures that fall under
the heading of multiple regression becomes available to the meta-analyst. We can
work with sets of covariates, such as three variables that together define a treatment,
or that allow for a nonlinear relationship between covariates and the effect size. We
can enter covariates into the analysis using a pre-defined sequence and assess the
impact of any set, over and above the impact of prior sets, to control for confounding
variables. We can incorporate both categorical (for example, dummy-coded) and
continuous variables as covariates. We can use these procedures both to assess the
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impact of covariates and also to predict the effect size in studies with specific
characteristics.

Multiple regression incorporates a wide array of procedures, and we cannot cover
these fully in this volume. Rather, we assume that the reader is familiar with
multiple regression in primary studies, and our goal here is to show how the same
techniques used in primary studies can be applied to meta-regression.

As is true in primary studies, where we need an appropriately large ratio of
subjects to covariates in order for the analysis be to meaningful, in meta-analysis we
need an appropriately large ratio of studies to covariates. Therefore, the use of meta-
regression, especially with multiple covariates, is not a recommended option when
the number of studies is small. In primary studies some have recommended a ratio
of at least ten subjects for each covariate, which would correspond to ten studies for
each covariate in meta-regression. In fact, though, there are no hard and fast rules in
either case.

FIXED-EFFECT MODEL

As we did when discussing subgroup analysis, we start with the fixed-effect model,
which is simpler, and then move on to the random-effects model, which is generally
more appropriate.

The BCG data set

Various researchers have published studies that assessed the impact of a vaccine,
known as BCG, to prevent the development of tuberculosis (TB). With the
re-emergence of TB in the United States in recent years (including many drug-
resistant cases), researchers needed to determine whether or not the BCG vaccine
should be recommended. For that reason, Colditz et al. (1994) reported a meta-
analysis of these studies, and Berkey et al. (1995) showed how meta-regression
could be used in an attempt to explain some of the variance in treatment effects.

The forest plot is shown in Figure 20.1. The effect size is the risk ratio, with a
risk ratio of 0.10 indicating that the vaccine reduced the risk of TB by 90%, a risk
ratio of 1.0 indicating no effect, and risk ratios higher than 1.0 indicating that the
vaccine increased the risk of TB. Studies are sorted from most effective to least
effective. As always for an analysis of risk ratios, the analysis was performed
using log transformed values and then converted back to risk ratios for
presentation.

Using a fixed-effect analysis the risk ratio for the 13 studies is 0.650 with a
confidence interval of 0.601 to 0.704, which says that the vaccine decreased the
risk of TB by at least 30% and possibly by as much as 40%. In log units the risk ratio is
—0.430 with a standard error of 0.040. The Z-value is —10.625 (p < 0.0001), which
allows us to reject the null hypothesis of no effect.
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Figure 20.1 Fixed-effect model — forest plot for the BCG data.

At least as interesting, however, is the substantial variation in the treatment
effects, which ranged from a risk ratio of 0.20 (an 80% reduction in risk) to 1.56
(a 56% increase in risk). While some of this variation is due to within-study error,
some of it reflects variation in the true effects. The Q-statistic is 152.233 with df =12
and p < 0.0001. 7% is 0.309, which yields a prediction interval of approximately
0.14 to 1.77, meaning that the true effect (risk ratio) in the next study could
fall anywhere in the range of 0.14 to 1.77. The value of F is 92.12, which means
that 92% of the observed variance comes from real differences between studies and,
as such, can potentially be explained by study-level covariates.

The next issue for the authors was to try and explain some of this variation. There
was reason to believe that the drug was more effective in colder climates. This
hypothesis was based on the theory that persons in colder climates were less likely
to have a natural immunity to TB. It was also based on the expectation that the drug
would be more potent in the colder climates (in warmer climates the heat would
cause the drug to lose potency, and direct exposure to sunlight could kill some of the
bacteria that were required for the vaccine to work properly).

In the absence of better predictor variables (such as the actual storage conditions
used for the vaccine) Berkey et al. (1995) used absolute distance from the equator as
a surrogate for climate (i.e. geographical regions in the Northern US would be
colder than those in the tropics), and used regression to look for a relationship
between Distance and treatment effect. Given the post hoc nature of this analysis, a
positive finding would probably not be definitive, but would suggest a direction
for additional research. (See also Sutton et al., 2000; Egger et al., 2001.)
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Assessing the impact of the slope

Table 20.1 shows the data for each study (events and sample size, effect size and
latitude). Table 20.2 shows the results for a meta-regression using absolute latitude
to predict the log risk ratio.

The regression coefficient for latitude is —0.0292, which means that every one
degree of latitude corresponds to a decrease of 0.0292 units in effect size. In this
case, the effect size is the log risk ratio, and (given the specifics of this example) this
corresponds to a more effective vaccination.

If we were working with a primary study and wanted to test the coefficient for
significance we might use a #-test of the form

B
t=—— 20.1
. (20.1)
In meta-analysis the coefficient for any covariate (B) and its standard error are based
on groups of studies rather than groups of subjects but the same logic applies.

Historically, in meta-regression the test is based on the Z-distribution, and that is the

Table 20.1 The BCG dataset.

Vaccinated Control

TB  Total TB Total RR InRR Viore  Latitude
Vandiviere et al, 1973 8 2545 10 629 0.198 —1.621 0.223 19
Ferguson & Simes, 1949 6 306 29 303 0205 —1.585 0.195 55
Hart & Sutherland, 1977 62 13598 248 12867 0.237 —1.442 0.020 52
Rosenthal et al, 1961 17 1716 65 1665 0.254 —1.371 0.073 42
Rosenthal et a/, 1960 3 231 1 220 0.260 —1.348 0.415 42
Aronson, 1948 4 123 1 139 0411 —-0.889 0.326 44
Stein & Aaronson, 1953 180 1541 372 1451 0.456 —0.786 0.007 a4
Coetzee & Berjak, 1968 29 7499 45 7277 0625 —0.469 0.056 27
Comstock et al, 1974 186 50634 141 27338 0.712 —-0.339 0.012 18
Frimodt-Moller et a/, 1973. 33 5069 47 5808 0.804 —0.218 0.051 13
Comstock et al, 1976 27 16913 29 17854 0983 —0.017 0.071 33

TB Prevention Trial, 1980 505 88391 499 88391 1.012 0.012  0.004 13
Comstock & Webster, 1969 5 2498 3 2341 1.562 0.446  0.533 33

Table 20.2 Fixed-effect model — Regression results for BCG.

Fixed effect, Z-Distribution

Point Standard 95% 95% Z-value p-Value
estimate error Lower Upper
Intercept 0.34356 0.08105 0.18471 0.50242 4.23899 0.00002

Latitude —0.02924 0.00265 —0.03444 —0.02404  —11.02270 0.00000
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Table 20.3 Fixed-effect model — ANOVA table for BCG regression.

Analysis of variance

Q df p-Value
Model (Qpoder) 121.49992 1 0.00000
Residual (Qregiy) 30.73309 11 0.00121
Total (Q) 152.23301 12 0.00000

approach presented here (however, see notes at the end of this chapter about other
approaches). The statistic to test the significance of the slope is

B

Z=—. 20.2
SE, (20.2)

Under the null hypothesis that the coefficient is zero, Z would follow the normal
distribution.

In the running example the coefficient for latitude is —0.02924 with standard
error 0.00265, so

—0.02924
=——=—-11.0227.
0.00265 0227

The two-tailed p-value corresponding to Z= —11.0227 is < 0.00001. This tells us
that the slope is probably not zero, and the vaccination is more effective when the
study is conducted at a greater distance from the equator.

The Z-test can be used to test the statistical significance of any single coefficient
but when we want to assess the impact of several covariates simultaneously we need
to use the Q-test. (This is analogous to the situation in primary studies where we use
a t-test to assess the impact of one coefficient but an F-test to assess the impact of
two or more.)

As we did when working with analysis of variance we can divide the sum of
squares into its component parts, and create an analysis of variance table as follows.

As before, Q is defined as a weighted sum of squares, which we can partition into
its component parts. Q reflects the total dispersion of studies about the grand mean.
0,.siq reflects the distance of studies from the regression line. Q,,,,4.; s the dispersion
explained by the covariates.

Each Q statistic is evaluated with respect to its degrees of freedom, as follows.

e (is 152.2330, with 12 degrees of freedom and p <0.00001 (this is the same value
presented for the initial meta-analysis with no covariates). This means that the
amount of total variance is more than we would expect based on within-study error.

® O,0der 18 121.4999 with 1 degree of freedom and p < 0.00001. This means that
the relationship between latitude and treatment effect is stronger than we would
expect by chance.
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® (0,.ia1s 30.7331 with 11 degrees of freedom and p < 0.0001. This means that
even with latitude in the model, some of the between-studies variance (reflected
by the distance between the regression line and the studies) remains
unexplained.

O,noder here is analogous to Q,,, for subgroup analysis, and Q. 1S analogous to
Q,vimnin for subgroup analysis. If the covariates are coded to represent subgroups,
then Q,,,,4.; Will be identical to Qp,;, and Q,.,;; Will be identical to Q,,inin-

The Z-test and the Q-test

In this example there is only one covariate and so we have the option of using
either the Z-test or the Q-test to test its relationship with effect size. It follows that
the two tests should yield the same results, and they do. The Z-value is —11.0227,
with a corresponding p-value of <0.0001. The Q-value is 121.4999 with a
corresponding p-value of <0.0001 (with 1 df ). Finally, Q should be equal to Z°
(since Q squares each difference while Z does not) and in fact —11.02277 is equal
to 121.4999.

When we have more than one covariate the Q statistic serves as an omnibus test of
the hypothesis that all the B’s are zero. The Z-test can be used to test any coefficient,
with the others held constant.

Quantify the magnitude of the relationship

The Z-test, like all tests of significance, speaks to the question of statistical, rather
than substantive, significance. Therefore, in addition to reporting the test of sig-
nificance, one should always report the magnitude of the relationship. Here, the
relationship of latitude to effect (expressed as a log risk ratio) is

In (RR)=0.3435 — 0.0292(X)

where X is the absolute latitude. Figure 20.2 shows the plot of log risk ratio on
latitude.

In the graph, each study is represented by a circle that shows the actual coordi-
nates (observed effect size by latitude) for that study. The size (specifically, the
area) of each circle is proportional to that study’s weight in the analysis. Since this
analysis is based on the fixed-effect model, the weight is simply the inverse of the
within-study variance for each study.

The center line shows the predicted values. A study performed relatively close
to the equator (such as the study performed in Madras, India, latitude 13) would
have an expected effect near zero (corresponding to a risk ratio of 1.0, which means
that the vaccination has no impact on TB). By contrast, a study at latitude 55
(Saskatchewan) would have an expected effect near —1.20 (corresponding to a risk
ratio near 0.30, which means that the vaccination is expected to decrease the risk of TB
by about 70%).
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Regression of log risk ratio on latitude (Fixed-effect)
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Figure 20.2 Fixed-effect model — regression of log risk ratio on latitude.

The 95% confidence interval for B is given by

LLz=B — 1.96 x SEj (20.3)
and
ULs=B + 1.96 x SEp. (20.4)
In the BCG example
LLg=(—0.0292) — 1.96 x 0.0027=-0.0344
and

ULy=(—0.0292) + 1.96 x 0.0027=—0.0240.

In words, the true coefficient could be as low as —0.0344 and as high as —0.0240.
These limits can be used to generate confidence intervals on the plot.

FIXED OR RANDOM EFFECTS FOR UNEXPLAINED HETEROGENEITY

In Part 3 we discussed the difference between a fixed-effect model and a random-
effects model. Under the fixed-effect model we assume that the true effect is the
same in all studies. By contrast, under the random-effects model we allow that the
true effect may vary from one study to the next.

When we were working with a single population the difference in models
translated into one true effect versus a distribution of true effects for all studies.
When we were working with subgroups (analysis of variance) it translated into
one true effect versus a distribution of effects for all studies within a subgroup (for
example, studies that used Intervention A or studies that used Intervention B).
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For meta-regression it translates into one true effect versus a distribution of effects
for studies with the same predicted value (for example, two studies that share the
same value on all covariates). This is shown schematically in Figure 20.3 and
Figure 20.4.
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Figure 20.3 Fixed-effect model — population effects as function of covariate.
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Figure 20.4 Random-effects model — population effects as a function of covariate.
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Under the fixed-effect model, for any set of covariate values (that is, for any
predicted value) there is one population effect size (represented by a circle in
Figure 20.3). Under the random-effects model, for any predicted value there is a
distribution of effect sizes (in Figure 20.4 the distribution is centered over the
predicted value but the population effect size can fall to the left or right of center).
(In both figures we assume that the prediction is perfect, so that the true effect (or
mean effect) falls directly on the prediction line.)

As always, the selection of a method should follow the logic of how the studies
were selected. When we introduced the idea of fixed versus random effects for a
single population, the example we used for the fixed-effect model was a pharma-
ceutical company that planned a series of ten trials that were identical for all
intents and purposes (page 83). When we moved on to analysis of variance we
extended the same example, and assumed that five cohorts would be used to test
placebo versus Drug A, while five would be used to test placebo versus Drug B
(page 161). We can extend this example, and use it to create an example where a
fixed-effect analysis would be appropriate for meta-regression. As before, we’ll
assume a total of 10 studies, five for placebo versus Drug A and five for placebo
versus Drug B. This time we’ll assume that each study used either 10, 20, 40, 80,
or 160 mg. of the drug and we will use regression to assess the impact of Drug and
Dose. The fixed-effect model makes sense here because the studies are known to
be identical on all other factors.

As before, we note that this example is not representative of most systematic
reviews. In the vast majority of cases, especially when the studies are performed by
different researchers and then culled from the literature, it is more plausible that the
impact of the covariates captures some, but not all, of the true variation among
effects. In this case, it is the random-effects model that reflects the nature of the
distribution of true effects, and should therefore be used in the analyses. Also as
before, if the study design suggests that the random-effects model is appropriate,
then this model should be selected a priori. It is a mistake to start with the fixed-
effect model and move on to random effects only if the test for heterogeneity is
statistically significant.

Since the meaning of a summary effect size is different for fixed versus random
effects, the null hypothesis being tested also differs. Both test a null hypothesis of
no linear relationship between the covariates and the effect size. The difference is
that under the fixed-effect model that effect size is the common effect size for all
studies with a given value of the covariates. Under the random-effects model that
effect size is the mean of the true effect sizes for all studies with a given value of
the covariates. This is important, because the different null hypotheses reflect
different assumptions about the sources of error. This means that different error
terms are used to compute tests of significance and confidence intervals under the
two models.

Computationally, the difference between fixed effect and random effects is
in the definition of the variance. Under the fixed-effect model the variance is
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the variance within studies, while under the random-effects model it is the
variance within studies plus the variance between studies (12). This holds true
for one population, for multiple subgroups, and for regression, but the mechan-
ism used to estimate 1° depends on the context. When we are working with a
single population, 1° reflects the dispersion of true effects across all studies,
and is therefore computed for the full set of studies. When we are working
with subgroups, t° reflects the dispersion of true effects within a subgroup, and
is therefore computed within subgroups. When we are working with regression,
° reflects the dispersion of true effects for studies with the same predicted
value (that is, the same value on the covariates) and is therefore computed for
each point on the prediction slope. As a practical matter, of course, most points
on the slope have only a single study, and so this computation is less transpar-
ent than that for the single population (or subgroups) but the concept is the
same. The computational details are handled by software and will not be
addressed here.

The practical implications of using a random-effects model rather than a fixed-
effect model for regression are similar to those that applied to a single population
and to subgroups. First, the random-effects model will lead to more moderate
weights being assigned to each study. As compared with a fixed-effect model, the
random-effects model will assign more weight to small studies and less weight to
large studies. Second, the confidence interval about each coefficient (and slope)
will be wider than it would be under the fixed-effect model. Third, the p-values
corresponding to each coefficient and to the model as a whole are less likely to meet
the criterion for statistical significance.

As always, the selection of a model must be based on the context and character-
istics of the studies. In particular, if there is heterogeneity in true effects that is not
explained by the covariates, then the random-effects model is likely to be more
appropriate.

RANDOM-EFFECTS MODEL

We return now to the BCG example and apply the random-effects model (Figure 20.5).

Using a random effects analysis the risk ratio for the 13 studies is 0.490 with a
confidence interval of 0.345 to 0.695, which says that the mean effect of the
vaccine was to decrease the risk of TB by at least 30% and possibly by as much as
65% (see Figure 20.5). In log units the risk ratio is —0.714 with a standard error of
0.179, which yields a Z-value of -3.995 (p < 0.001) which allows us to reject the
null hypothesis of no effect.

At least as interesting, however, is the substantial variation in the treatment
effects, which ranged from a risk ratio of 0.20 (vaccine reduces the risk by 80%)
to 1.56 (vaccine increases the risk by 56%). The relevant statistics were presented
when we discussed the fixed-effect model.
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Figure 20.5 Random-effects model — forest plot for the BCG data.
Assessing the impact of the slope

A meta-regression using the random-effect model (method of moments) yields the
results shown in Table 20.4.

This has the same format as Table 20.2, showing the coefficients for predicting the
log risk ratio from latitude and related statistics. We use an asterisk (*) to indicate that
these statistics are based on the random-effects model. With that distinction, the
interpretation of the slope(s) is the same as that for the fixed-effect model. Concretely,

B

AR . 20.5
SEg- ( )

Under the null hypothesis that the coefficient is zero, Z* would follow the normal
distribution.
In the running example the coefficient for latitude is —0.0923 with standard error
0.00673, so
—0.02923
=———— =—-43411.
0.00673

Table 20.4 Random-effects model — regression results for BCG.

Random effects, ZDistribution

Point Standard 95% 95% Z-value p-Value
estimate error Lower Upper
Intercept 0.25954 0.23231 —0.19577 0.71486 1.11724 0.26389

Latitude —0.02923 0.00673 —0.04243 —0.01603 —4.34111 0.00001
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Table 20.5 Random-effects model — test of the model.

Test of the model:

Simultaneous test that all coefficients (excluding intercept) are zero
Q% noder = 18.8452, df = 1, p = 0.00001

Goodness of fit: Test that unexplained variance is zero

77 = 0.063, SE = 0.055, Qresiy = 30.733, df = 11, p = 0.00121

(In this example the slope happens to be almost identical under the fixed-effect and
random-effects models, but this is not usually the case.) The two-tailed p-value
corresponding to Z* = —4.3411 is 0.00001. This tells us that the slope is probably
not zero, and the vaccination is more effective when the study is conducted at a
greater distance from the equator.

Under the null hypothesis that none of the covariates 1 to p is related to effect size,
Oinoder Would be distributed as chi-squared with degrees of freedom equal to p. In
the running example, Oioder =18.8452, df=1, and p = 0.00001 (see Table 20.5).

In this example there is only one covariate (latitude) and so we have the option of using
either the Z-test or the Q-test to assess the impact of this covariate. It follows that the two
tests should yield the same results, and they do. The Z-value is —4.3411, with a correspond-
ing p-value of 0.00001. The Q-value is 18.8452 with a corresponding p-value of 0.00001.
Finally, Q,,.,4; should be equal to Z** and in fact 18.8452 equals —4.3411%

The goodness of fit test addresses the question of whether there is heterogeneity
that is not explained by the covariates. Q,.;; can also be used to estimate (and test)
the variance, 1°, of this unexplained heterogeneity. This Q. is the weighted
residual SS from the regression using fixed-effect weights (see Table 20.3)

Oioder here is analogous to Oy for subgroup analysis, and Q,.;; is analogous to
Q,virnin for subgroup analysis. If the covariates represent subgroups, then Q:mdd is
identical to Qy,, and O,y is identical to Q,,;min. If there are no predictors then
0,.siq here is the same as Q for the original meta-analysis.

When working with meta-regression with the fixed-effect model we were able to
partition the total variance into a series of components, with Q,,,4.; Plus Q,esia
summing to Q. This was possible with the fixed-effect model because the weight
assigned to each study was determined solely by the within-study error, and was
therefore the same for all three sets of calculations. By contrast, under the random-
effects model the weight assigned to each study incorporates between-studies
variance also, and this varies from one set of calculations to the next. Therefore,
the variance components are not additive. For that reason, we display an analysis of
variance table for the fixed-effect analysis, but not for the random-effects analysis.

Quantify the magnitude of the relationship
The relationship of latitude to effect (expressed as a log risk ratio) is

In (RR)=0.2595 — 0.0292(X)
where X is the absolute latitude. We can plot this in Figure 20.6.
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Regression of log risk ratio on latitude (Random-effects)
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Figure 20.6 Random-effects model — regression of log risk ratio on latitude.

In this Figure, each study is represented by a circle that shows the actual
coordinates (observed effect size by latitude) for that study. The size (specifically,
the area) of each circle is proportional to that study’s weight in the analysis. Since
this analysis is based on the random-effects model, the weight is the total variance
(within-study plus 7%) for each study.

Note the difference from the fixed-effect graph (Figure 20.2). When using
random effects, the weights assigned to each study are more similar to one another.
For example, the TB prevention trial (1980) study dominated the graph under the
fixed-effect model (and exerted substantial influence on the slope) while Comstock
and Webster (1969) had only a trivial impact (the relative weights for the two
studies are 41% and 0.3% respectively). Under random effects the two are more
similar (14% and 1.6% respectively).

The center line shows the predicted values. A study performed relatively close to
the equator (latitude of 10) would have an expected effect near zero (corresponding
to a risk ratio of 1.0, which means that the vaccination has no impact on TB).
By contrast, a study at latitude 55 (Saskatchewan) would have an expected effect
near —1.50 (corresponding to a risk ratio near 0.20, which means that the vaccina-
tion decreased the risk of TB by about 80%).

The 95% confidence interval for B is given by

LLg-=B" —1.96 x SEg- (20.6)
and

ULg-=B" +1.96 x SEg- . (20.7)
In the running example

LLg-=(—0.0292) — 1.96 x 0.0067=—0.0424



Heterogeneity

and
ULg-=(—0.0292) + 1.96 x 0.0067=-0.0160.

In words, the true coefficient could be as low as —0.0424 and as high as —0.0160.

The proportion of variance explained

In Chapter 19 we introduced the notion of the proportion of variance explained by
subgroup membership in a random-effects analysis. The same approach can be
applied to meta-regression.

Consider Figure 20.7, which shows a set of six studies with no covariate. Since
there is no covariate the prediction slope is simply the mean (the intercept, if we
were to compute a regression), depicted by a vertical line. The normal distribution at
the bottom of the figure reflects 72, and is needed to explain why the dispersion
from the prediction line (the mean) exceeds the within-study error.

Now, consider Figure 20.8, which shows the same size studies with a covariate
X, and the prediction slope depicted by a line that reflects the prediction equation.
The normal distribution at each point on the prediction line reflects the value of
T2, and is needed to explain why the dispersion from the prediction line (this time,
the slope) exceeds the within study error. Because the covariate explains some of
the between-studies variance, the T 2 in Figure 20.8 is smaller than the one in
Figure 20.8., and the ratio of the two can be used to quantify the proportion of
variance explained.

Note 1. Normally, we would plot the effect size on the Y axis and the covariate on
the X axis (see, for example, Figure 20.6). Here, we have transposed the axes to
maintain the parallel with the forest plot.

Note 2. For clarity, we plotted the true effects for each figure. In practice, of
course, we observe estimates of the true effects, remove the portion of variance
attributed to within-study error, and impute the amount of variance remaining.

In primary studies, a common approach to describing the impact of a covariate is
to report the proportion of variance explained by that covariate. That index, R, is
defined as the ratio of explained variance to total variance,

2

o .
R2 _ ex;;lamed (208)
Tlotal
or, equivalently,
or .
R2 =1_ une);plamed ) (209)
Olotal

This index is intuitive as it can be interpreted as a ratio, with a range of O to 1, or
of 0% to 100%. Many researchers are familiar with this index, and have a sense
of what proportion of variance is likely to be explained by different kinds of
covariates or interventions.
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Figure 20.7 Between-studies variance (72) with no covariate.
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Figure 20.8 Between-studies variance (72) with covariate.

This index cannot be applied directly to meta-analysis. The reason is that in meta-
analysis the total variance includes both variance within studies and between studies.
The covariates are study-level covariates, and as such they can potentially explain
only the between-studies portion of the variance. In the running illustration, even if



Heterogeneity

Table 20.6 Random-effects model — comparison of model (latitude) versus the null model.

Comparison of model with latitude versus the null model
Total between-study variance (intercept only)
rotar = 0.309, SE = 0.230, Qpesiy = 152.233, df = 12, p = 0.00000

Unexplained between-study variance (with latitude in model)
T nexpiained = 0-063, SE = 0.055, Qs = 30.733, df = 11, p = 0.0012

Proportion of total between-study variance explained by the model
R analog = 1—(0.063/0.309) 79.50%

the true effect for each study fell directly on the prediction line the proportion of
variance explained would not approach 1.0 because the observed effects would fall at
some distance from the prediction line.

Therefore, rather than working with this same index we use an analogous index,
defined as the true variance explained, as a proportion of the total zrue variance.
Since the true variance is the between-studies variance, T2, we compute

T2

Rz _ explained (20 10)
thoml
or
T2 i
R2 =1 _ une;plamed ) (201 1)
Ttotal

In the running example T2 .. for the full set of studies was 0.309, and Tinexpzmned for
the equation with latitude is 0.063. This gives us

R*=1— (%) =0.7950. (20.12)

This is shown schematically for the running example (see Figure 20.9). In Figure
20.9, the top line shows that 8% of the total variance was within studies and 92%

Within
Studies Between-studies (/2) 92%
8%
Unexplained Explained by latitude (R?) 79%

21%

Figure 20.9 Proportion of variance explained by latitude.
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was between studies (which is also the definition of /?). The within-studies
variance cannot be explained by a study-level moderator, and so is removed
from the equation and we focus on the shaded part.

On the bottom line, the type of intervention is able to explain 79% of the relevant
variance, leaving 21% unexplained. Critically, the 79% and 21% sum to 100%,
since we are concerned only with the variance between-studies.

While the R? index has a range of O to 1 in the population, it is possible for
sampling error to yield a value of R? that falls outside of this range. In that case, the
value is set to either O (if the estimate falls below 0) or to 1 (if it falls above 1).

SUMMARY POINTS

e Just as we can use multiple regression in primary studies to assess the
relationship between subject-level covariates and an outcome, we can use
meta-regression in meta-analysis to assess the relationship between study-
level covariates and effect size.

e Meta-regression may be performed under the fixed-effect or the random-
effects model, but in most cases the latter is appropriate.

e [n addition to testing the impact of covariates for statistical significance, it is
important to quantify the magnitude of their relationship with effect size. For
this purpose we can use an index based on the percent reduction in true
variance, analogous to the R? index used with primary studies.






